Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Glycoconjugates as carriers for specific delivery of therapeutic drugs and genes

Identifieur interne : 002C38 ( Main/Exploration ); précédent : 002C37; suivant : 002C39

Glycoconjugates as carriers for specific delivery of therapeutic drugs and genes

Auteurs : Michel Monsigny [France] ; Annie-Claude Roche [France] ; Patrick Midoux [France] ; Roger Mayer [France]

Source :

RBID : ISTEX:7C21062FC1D8EA4835486C9AB2A66CBF0A8597EC

English descriptors

Abstract

Abstract: Cell surface receptors are good candidates to selectively target drugs, oligonucleotides or even genes by making use of their specific ligands. A large number of mammalian cells express cell surface sugar-binding proteins, also called “membrane lectins”. Therefore, sugars may be used as specific recognition signals to specifically deliver biological active components. Tens of membrane lectins with different sugar specificities have been characterized; some of them actively carry their ligands to intracellular compartments, including endsomes, lysosomes and, in some cases, Golgi apparatus.In this review, we summarize the main properties of neoglycoproteins and glycosylated polymers; they have been developed to study the properties of endogenous lectins and to carry various drugs. Glycoconjugates have been successfully used to carry biological response modifiers such as N-acetylmuramyldipeptide. N-Acetylmuramyldipeptide is, in vitro, hundreds of times more efficient in rendering macrophages tumoricidal when it is bound to this type of carrier. In vivo, the N-acetylmuramyldipeptide bound to glycoconjugates containing mannose in a terminal non-reducing position, induces the eradication of lung metastases, occurring when treatment is started, in 70% of mice; free N-acetylmuramyldipeptide is strictly inactive. Similarly, N-acetylmuramyldipeptide bound to the same glycoconjugates induces an active antiviral effect.Glycoconjugates are also suitable for carrying antisense oligonucleotides specific for viral sequences. Antisense oligonucleotides protected at both ends and linked through a disulfide bridge to the glycoconjugates are 10 times more efficient than the corresponding free oligonucleotides.Poly-l-lysine containing about 190 lysine residues has been substituted by three components: sugars as recognition signal, antiviral (or antiparasite) agents as therapeutic elements and gluconoic acid as neutralizing and solubilizing agent. This type of neutral, highly water-soluble glycosylated polymer is a very efficient carrier to deliver drugs in infected cells according to the nature of the sugar borne on the polymer and to the specificity of the lectin present at the surface of the infected cells.Finally, poly-l-lysine (190 residues) partially substituted with sugars (60 units) is a polycationic glycosylated polymer which easily makes complexes with plasmids. These complexes are very efficient in transfecting cells in a sugar-dependent manner. The expression of reporter gene is greatly enhanced when cells are incubated with the plasmid-glycosylated poly-l-lysine complex in the presence of either 100 μM chloroquine or 10 μM fusogenic docosapeptide. Furthermore, this transfection method leads to a much larger number of stable transfectants than the classical method using calcium phosphate precipitate. The general properties of glycosylated proteins and of glycosylated polymers are presented and their efficiency in targeting genes in comparison with that of other available targeted transfection methods is discussed.

Url:
DOI: 10.1016/0169-409X(94)90003-5


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Glycoconjugates as carriers for specific delivery of therapeutic drugs and genes</title>
<author>
<name sortKey="Monsigny, Michel" sort="Monsigny, Michel" uniqKey="Monsigny M" first="Michel" last="Monsigny">Michel Monsigny</name>
</author>
<author>
<name sortKey="Roche, Annie Claude" sort="Roche, Annie Claude" uniqKey="Roche A" first="Annie-Claude" last="Roche">Annie-Claude Roche</name>
</author>
<author>
<name sortKey="Midoux, Patrick" sort="Midoux, Patrick" uniqKey="Midoux P" first="Patrick" last="Midoux">Patrick Midoux</name>
</author>
<author>
<name sortKey="Mayer, Roger" sort="Mayer, Roger" uniqKey="Mayer R" first="Roger" last="Mayer">Roger Mayer</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:7C21062FC1D8EA4835486C9AB2A66CBF0A8597EC</idno>
<date when="1994" year="1994">1994</date>
<idno type="doi">10.1016/0169-409X(94)90003-5</idno>
<idno type="url">https://api.istex.fr/ark:/67375/6H6-7KXFXRNG-L/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000D56</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000D56</idno>
<idno type="wicri:Area/Istex/Curation">000D56</idno>
<idno type="wicri:Area/Istex/Checkpoint">001A23</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">001A23</idno>
<idno type="wicri:doubleKey">0169-409X:1994:Monsigny M:glycoconjugates:as:carriers</idno>
<idno type="wicri:source">HAL</idno>
<idno type="RBID">Hal:hal-02163748</idno>
<idno type="url">https://hal.archives-ouvertes.fr/hal-02163748</idno>
<idno type="wicri:Area/Hal/Corpus">000101</idno>
<idno type="wicri:Area/Hal/Curation">000101</idno>
<idno type="wicri:Area/Hal/Checkpoint">000257</idno>
<idno type="wicri:explorRef" wicri:stream="Hal" wicri:step="Checkpoint">000257</idno>
<idno type="wicri:doubleKey">0169-409X:1994:Monsigny M:glycoconjugates:as:carriers</idno>
<idno type="wicri:Area/Main/Merge">002C98</idno>
<idno type="wicri:Area/Main/Curation">002C38</idno>
<idno type="wicri:Area/Main/Exploration">002C38</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Glycoconjugates as carriers for specific delivery of therapeutic drugs and genes</title>
<author>
<name sortKey="Monsigny, Michel" sort="Monsigny, Michel" uniqKey="Monsigny M" first="Michel" last="Monsigny">Michel Monsigny</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire de Biochimie des Glycoconjugués et Lectines Endogènes, Université d'Orléans et Centre de Biophysique Moléculaire, CNRS, Bât. B, 1 rue Haute, 45071 Orléans Cedex 2</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Centre-Val de Loire</region>
<region type="old region" nuts="2">Région Centre</region>
<settlement type="city">Orléans</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Roche, Annie Claude" sort="Roche, Annie Claude" uniqKey="Roche A" first="Annie-Claude" last="Roche">Annie-Claude Roche</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire de Biochimie des Glycoconjugués et Lectines Endogènes, Université d'Orléans et Centre de Biophysique Moléculaire, CNRS, Bât. B, 1 rue Haute, 45071 Orléans Cedex 2</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Centre-Val de Loire</region>
<region type="old region" nuts="2">Région Centre</region>
<settlement type="city">Orléans</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Midoux, Patrick" sort="Midoux, Patrick" uniqKey="Midoux P" first="Patrick" last="Midoux">Patrick Midoux</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire de Biochimie des Glycoconjugués et Lectines Endogènes, Université d'Orléans et Centre de Biophysique Moléculaire, CNRS, Bât. B, 1 rue Haute, 45071 Orléans Cedex 2</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Centre-Val de Loire</region>
<region type="old region" nuts="2">Région Centre</region>
<settlement type="city">Orléans</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mayer, Roger" sort="Mayer, Roger" uniqKey="Mayer R" first="Roger" last="Mayer">Roger Mayer</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire de Biochimie des Glycoconjugués et Lectines Endogènes, Université d'Orléans et Centre de Biophysique Moléculaire, CNRS, Bât. B, 1 rue Haute, 45071 Orléans Cedex 2</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Centre-Val de Loire</region>
<region type="old region" nuts="2">Région Centre</region>
<settlement type="city">Orléans</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Advanced Drug Delivery Reviews</title>
<title level="j" type="abbrev">ADR</title>
<idno type="ISSN">0169-409X</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1994">1994</date>
<biblScope unit="volume">14</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="1">1</biblScope>
<biblScope unit="page" to="24">24</biblScope>
</imprint>
<idno type="ISSN">0169-409X</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0169-409X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>2mane</term>
<term>4glcnacfl</term>
<term>Acad</term>
<term>Acidic</term>
<term>Allopurinol</term>
<term>Allopurinol riboside</term>
<term>Amino groups</term>
<term>Antiviral</term>
<term>Antiviral drugs</term>
<term>Binding site</term>
<term>Biochem</term>
<term>Biol</term>
<term>Biological response modifiers</term>
<term>Blood cells</term>
<term>Bovine serum albumin</term>
<term>Carbohydrate</term>
<term>Carrier</term>
<term>Cell lysates</term>
<term>Cell surface</term>
<term>Chem</term>
<term>Chloroquine</term>
<term>Complete culture medium</term>
<term>Complex oligosaccharides</term>
<term>Control experiments</term>
<term>Cytosol</term>
<term>Cytosolic</term>
<term>Cytosolic fraction</term>
<term>Cytotoxic</term>
<term>Delmotte</term>
<term>Derivative</term>
<term>Disulfide bridge</term>
<term>Drug carrier syst</term>
<term>Drug carriers</term>
<term>Drug deliv</term>
<term>Drug delivery reviews</term>
<term>Drug spacer</term>
<term>Endocytosis</term>
<term>Endogenous lectins</term>
<term>Endoplasmic reticulum</term>
<term>Endosomal</term>
<term>Endosomes</term>
<term>Endothelial cells</term>
<term>Febs lett</term>
<term>Flow cytometry</term>
<term>Fluorescein</term>
<term>Fluorescein residues</term>
<term>Fluoresceinylated</term>
<term>Fluoresceinylated neoglycoproteins</term>
<term>Fluorescence intensity</term>
<term>Free oligonucleotides</term>
<term>Free pmea</term>
<term>Fusogenic</term>
<term>Fusogenic peptide</term>
<term>Galactose residue</term>
<term>Gene expression</term>
<term>Gluconoyl</term>
<term>Gluconoyl residues</term>
<term>Glycoconjugates</term>
<term>Glycoprotein</term>
<term>Glycosylated</term>
<term>Glycosylated carrier</term>
<term>Glycosylated carriers</term>
<term>Glycosylated polylysine</term>
<term>Glycosylated polymer</term>
<term>Glycosylated polymers</term>
<term>Golgi apparatus</term>
<term>Hepg2</term>
<term>Hepg2 cells</term>
<term>High affinity</term>
<term>Hours incubation</term>
<term>Hydrophilic drug</term>
<term>Intracellular</term>
<term>Kieda</term>
<term>Lactosaminated serum albumin</term>
<term>Lactosyl residues</term>
<term>Lactplk</term>
<term>Lectin</term>
<term>Lewis lung carcinoma cells</term>
<term>Ligand</term>
<term>Luciferase</term>
<term>Luciferase activity</term>
<term>Lysine residues</term>
<term>Lysosomal</term>
<term>Lysosome</term>
<term>Macromolecular carrier</term>
<term>Macrophage</term>
<term>Mane</term>
<term>Mannose</term>
<term>Mannose receptor</term>
<term>Mannose receptors</term>
<term>Mannose residues</term>
<term>Mannosylated</term>
<term>Mannosylated serum albumin</term>
<term>Meijer</term>
<term>Membrane</term>
<term>Membrane lectin</term>
<term>Membrane lectins</term>
<term>Microsomal fraction</term>
<term>Midoux</term>
<term>Moiety</term>
<term>Monocyte</term>
<term>Monsigny</term>
<term>Neoglycoproteins</term>
<term>Oligonucleotide</term>
<term>Oligonucleotides</term>
<term>Oligosaccharide</term>
<term>Other lectins</term>
<term>Peptide</term>
<term>Plasmid</term>
<term>Pmea</term>
<term>Polylysine</term>
<term>Polymer</term>
<term>Receptor</term>
<term>Recognition signal</term>
<term>Relative light units</term>
<term>Residue</term>
<term>Riboside</term>
<term>Roche</term>
<term>Serum albumin</term>
<term>Sugar moieties</term>
<term>Target cell</term>
<term>Target drugs</term>
<term>Terminal position</term>
<term>Thymidine kinase activity</term>
<term>Transcriptase activity</term>
<term>Transfection</term>
<term>Unpublished data</term>
<term>Various drugs</term>
<term>Vesicle</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: Cell surface receptors are good candidates to selectively target drugs, oligonucleotides or even genes by making use of their specific ligands. A large number of mammalian cells express cell surface sugar-binding proteins, also called “membrane lectins”. Therefore, sugars may be used as specific recognition signals to specifically deliver biological active components. Tens of membrane lectins with different sugar specificities have been characterized; some of them actively carry their ligands to intracellular compartments, including endsomes, lysosomes and, in some cases, Golgi apparatus.In this review, we summarize the main properties of neoglycoproteins and glycosylated polymers; they have been developed to study the properties of endogenous lectins and to carry various drugs. Glycoconjugates have been successfully used to carry biological response modifiers such as N-acetylmuramyldipeptide. N-Acetylmuramyldipeptide is, in vitro, hundreds of times more efficient in rendering macrophages tumoricidal when it is bound to this type of carrier. In vivo, the N-acetylmuramyldipeptide bound to glycoconjugates containing mannose in a terminal non-reducing position, induces the eradication of lung metastases, occurring when treatment is started, in 70% of mice; free N-acetylmuramyldipeptide is strictly inactive. Similarly, N-acetylmuramyldipeptide bound to the same glycoconjugates induces an active antiviral effect.Glycoconjugates are also suitable for carrying antisense oligonucleotides specific for viral sequences. Antisense oligonucleotides protected at both ends and linked through a disulfide bridge to the glycoconjugates are 10 times more efficient than the corresponding free oligonucleotides.Poly-l-lysine containing about 190 lysine residues has been substituted by three components: sugars as recognition signal, antiviral (or antiparasite) agents as therapeutic elements and gluconoic acid as neutralizing and solubilizing agent. This type of neutral, highly water-soluble glycosylated polymer is a very efficient carrier to deliver drugs in infected cells according to the nature of the sugar borne on the polymer and to the specificity of the lectin present at the surface of the infected cells.Finally, poly-l-lysine (190 residues) partially substituted with sugars (60 units) is a polycationic glycosylated polymer which easily makes complexes with plasmids. These complexes are very efficient in transfecting cells in a sugar-dependent manner. The expression of reporter gene is greatly enhanced when cells are incubated with the plasmid-glycosylated poly-l-lysine complex in the presence of either 100 μM chloroquine or 10 μM fusogenic docosapeptide. Furthermore, this transfection method leads to a much larger number of stable transfectants than the classical method using calcium phosphate precipitate. The general properties of glycosylated proteins and of glycosylated polymers are presented and their efficiency in targeting genes in comparison with that of other available targeted transfection methods is discussed.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Centre-Val de Loire</li>
<li>Région Centre</li>
</region>
<settlement>
<li>Orléans</li>
</settlement>
</list>
<tree>
<country name="France">
<region name="Centre-Val de Loire">
<name sortKey="Monsigny, Michel" sort="Monsigny, Michel" uniqKey="Monsigny M" first="Michel" last="Monsigny">Michel Monsigny</name>
</region>
<name sortKey="Mayer, Roger" sort="Mayer, Roger" uniqKey="Mayer R" first="Roger" last="Mayer">Roger Mayer</name>
<name sortKey="Midoux, Patrick" sort="Midoux, Patrick" uniqKey="Midoux P" first="Patrick" last="Midoux">Patrick Midoux</name>
<name sortKey="Roche, Annie Claude" sort="Roche, Annie Claude" uniqKey="Roche A" first="Annie-Claude" last="Roche">Annie-Claude Roche</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002C38 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002C38 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:7C21062FC1D8EA4835486C9AB2A66CBF0A8597EC
   |texte=   Glycoconjugates as carriers for specific delivery of therapeutic drugs and genes
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021